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FOREWORD

This report was prepared by MITHRAS, Inc., of Cambridge,
Massachusetts, for the Upper Atmosphere Physics Laboratory, Air
Force Cambridge Reésearch Laboratories, Hanscom Field, Bedford,
Massachusetts, undér Contract AF19(628)-3280. The work was initiated
by Dr. N. W. Rosenberg and monitored by him and Dr. D. Golomb.
The research was supportéd by Advanced Research Projects Agency
as-part of Project DEFENDER.

The investigations whose résults are reported were conducted
during the period 1 July 1963 to 30 June 1964. They were directed by
Mr. Jacques A: F. Hill and carried out by Mr. Henry L. Alden, and
Mr. Roger H: Habert. This final report was written by Mr. Alden.

‘The work reported hére represents a continuation of a program
begun during thée previous year under Contract AF19(628)-415. This
re,éort ¢oncludes the work on Contract A%'19(628)-3280.
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ABSTRACT

This report describes methods for calculation of the
velocities and thermodynamic properties of flow fields
thrcugh and around high altitude rocket plumes. The main
effort is directed at obtaining a good repreésentation of both
the jet flow from rocket motors and the shock-mixing
layers in the frontal régions; theé calculation then proceeds
downstream using standard methods. The work may be
divided in three parts: the development of meéthods to cal-
culate the flowfields throughout plumes using the principles
of inviscid continuum mechanics; thé study of the shock-
mixing layér structure 2t the nose of the plume using the
géneral Navier-Stokes equations (i.e., accounting for vis-
cosity, héat conduction and diffusion); and an estimate of
validity of continuum mechanics for desc¢ribing high altitude
plumes, as inferred from a study of shock wave formation
at high altitudes. A comparison with avaiiable cbservations
shows good agreement with overall plume dimensions as
determined by the flow-field analysis. It may be concluded
that the analysis provides a sound gas-dynamic description
which maybe used as a basis for investigation of the plasma

and chemi-electric properties of high altitude plumes.
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1, INTRODUCTION

As the exhaust gases released by a missile in powered flight
expand into the atmosphere, a complex of fluid dynamic, chemical and
radiative phenomena occur. These are associated with a large visible
plume which forms around the rocket and trails behind it, as shown
by Rosenberg (1961). The radiative phenomena are ""observables' and
have been subjéected to the most inténsive observation. In order to
understand how they arise and what form they may take in new situa-
tions, it is necessary to study th> chemistry, plasma properties and
fluid dynamics of the plumes.

The work réported hére is concérned with theé fluid dynamic
aspects of wmissile tra'ls, and especially with the motions of both
the air and rocket gases which create the plumes. It is thus an exten-
sion of early work by Hill and Habert (1963). In the latter a simple
theory was developed for the sizée and shape of high altitude plumes,
and the dependence of thése propertiés on altitude, motor size, nozzle
geometry, conbustion pressure and forward speed. The general plume
was described by a two-parameter family of ellipsoids; using a simple
blast wave theory the radius of curvature at the nose was evaluated,
while the plume length was calculated using the concept of plume drag.
Comparison between pred1ct1ons and optu.al observations showed
excellent agreement in nosé radii and maximum diameters. In addition
it was shown that it is reasonablé to use the methods of ¢ontinuum
mechanics to study the flows in plumes. An appropriate approximation
to the Navier-Stokes equations was developeéd for the structuré of the
mixing layer in the frontal regions, where it is merged with botk the
external and internal shock wavés. The success of the early work
suggested that it would be possible to develop methods to evaluate the
entire {low field in plumeés, a goal of great practical inter est since it
would permit calculation of air-gas densities, chemical reactions and
electro-opucal properties.

This report describes the application of thevretical principles
to the problem of dewsmg methods to calculate the velocities and
thermodynamic properties of flow fields through and around high-
altitude plumes. The main effort is directed at obtaining a good repre-
sentation of both the jet flow from rocket motors and the shock-mixing
layers in the frontal regions. Farther downstream, and at larger
distances lateraliy from the plume axis, standard methods are avail-
able. The work may be divided in three parts: the development of
methods to calculate the flow fields throughout plumes using the principles
of inviscid continuum mechanics; the study of the shock-mixing layer
structure at the nose o: the plume using the general Navier -Stokes
equations (i. e. accounting for viscosity, heat conduction, diffusion); and
an estimate of the validity of continuum mechanics for describing high

1 MC 63-80-R1
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altitude plumes, as inferred from a study of shock wave formation at
high altitudes.

It should be noted that in this work there is the requirement
that the gross propertiés of plumes, such as nose radius and length,
be predictable from the detailed flow picture, and that they must agree
with the simple méthods already developed in the early work, as
well as with observation of flights.
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2. SUMMARY ANL CONCLUSIONS

Methods have been developed to calculate flow fields in rocket
plumes at high altitude. These, together with the technique of
Witham (1960) supply a complete and practical way to analyze the field
properties (velocities and thermo-dynami¢ quantities) using the prin-
ciples of inviscid continuum mechanics. The methods may be des-
cribed as follows.

a.

The inner flow from the rocket nozzle is identical to
that which would occrr in a vacuum. The inviscid,
perfect-fluid formulation of gas dynamics is used to
obtain asymptotic équations for continuous flows issu-
ing from nozzles intd a vacuum. A method of series
expansion is employed such that the first term repre-
sents the final (limiting) flow at very large distances
from the nozzle. The genéral solution for higher order
térms is demonstratéd. Specific solutions for first
and second order téerms are obtained. The flow is
described as a seriés of perturbations of a flow
everywhere radial and at the limiting velocity; the
angular distribution of mass flux along various radial
directions, according to the theory, can be chosen
arbitrarily and can therefore be used to match the
initial conditions of the flow near the nozzle. The latter
conditions must be obtained independently by experi-
ment or calculation, e.g., by the method of characier-
istics.

The surface of the plume is conveniently described, in
the inviscid approximation, by the dividing stream-
line separating the outer air flow from the inner flow
of rocket gases. Starting with the approximations of
hypersonic flows, the inviscid plume equation is set
up which, when integrated, locates the surface of
dividing streamlines. The equation is integrated for
representative cases.

With the dividing streamlines as reference, the location
and properties of the double shock layer are expressed
algebraically.

Flow directly downstream of the rocket is returned to
atmospheri~ pressure through a mach disc which is
located by the methods of Hill and Habert (1963); flow
outside the wake of rocket gases and behind the frontal
regions of the plume can be analyzed by the technique
of Witham. Thus the set of methods (a)-(d) is a complete
system for inviscid plume analysis,

3 MC 63-80-R1



The flow at the nose of plumes has been analyzed using the
Navier-Stokes equations accounting for viscosity, diffusion and heat
conduction. The reduced equations of Hill and Habert {(1963) were inte-
grated using the method of influence coefficients to satisfy the split bound-
ary conditions. This method gave a set of numerical results for the
flow pattern in the merged layer around a spherical release; the analysis
représents the first computation of its kind. It was found however that
the method was inherently awkward and slow. To remedy this a second
method was developed for programming in FORTRAN. The problem
is one of integrating a set of eight first-order ordinary differential
equations which are restricted by a sct of split boundary conditions.
Development of the new method was accomplished through the use of a
set of asymptotic (analytic) solutions to the equations, an approach which
greatly simplifies the numerical program.

The numerical results from the first method show thé struc-
ture of the merged layer for one particular flight condition, and dem-
onstrate the adequacy of the basic formulation of the problem to
represent the variation o properties in the merged layer.

The study of shock wave formation at high altitude shows that
no completely satisfactory criterion for shock wave formation has
yet been established in thé field of rarefied gas-dynamics. A plausible
criterion can be developed however, expressible in terms of the ratio
of shock thickness to plume (or body) radius. Application of this
criterion to rocket plumes leads tc the result that typical ICBMS and
IRBMS will generate a bow shock all the way to burnout of the last
stage (SECO).

4 MC 63-80-R1
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3. INVISCID PLUME FLOW

3.1 Geueral

The plume shape behind a rocket is the résult of interaction
between the atmosphere, the forward motion of the missile, and the jet
flow from the rocket motor. The inviscid flow model is that shown in
Fig. 3.1. The coordinate axes are fixed in the missile, thus giving the
atmospheric free stream a velocity relative to the origin. Beéhind the
rocket is a region in which the flow is identical to the flow of a jet ex-
hausting to vacuum. This region is bounded by an inner shock which
alters the jet velocity and pressure to accommaodate them to the on-
coming free stream. The latter must also accommodate itself by pass-
ing through an outer shock. In between the two shocks is a zone called
the merged layer in which the two gases flow together downstream. In
reality the gases mix, and the shocks extend well into the layer because
of viscous forces. The properties of the layer are complex and depend
on the effects of viscosity, diffusion, heat transfer and the properties
of real gases. A discussion and analysis of these complications are
taken up in a separate section {4). In the idealized inviscid model the
layer can be thought of as flowing in two parallel sublayers of unmixed
gases, separated by a contact surface as indicated by the dotted linie in
Fig. 3.1. Directly downstream from the rocket, the region of jet flow
is returned to atmospheric pressure by a combination of shock and vis-
cous processes which are not yet known. For this model it will suffice
to assume that the jet flow is returned to ambient pressure through a
normal shock in the rear. This condition determines the location of the
rear shock and the flow behind it for the inviscid model.

In order to analyze the inviscid plume model it is first necessary
to have a knowledge of the jet flow from the rocket motor at large dis-
tances from the nozzie exit. To this end a general analysis was made of
asymptotic flows of jets exhausting a vacua. The results provide a
method of representing the asymptotic flow behind any rocket motor in
a useful form. With this s a basis, the analysis of rocket plumes was
then carried out to obtain the shape and position of the contact surface
in the merged layer.

In Section 3 an account is given of the development of general
formulas for the asymptotic flows of jets. This is followed by a de-
scription of the inviscid plume equations and their solution in certain
cases. These results are then examined in the light of experimental
data. Finally a discussion is given of the next steps in the analysis of
the rocket plume problem.

5 MC 63-80-R1
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3.2 The Asymptotic Flows of Jets Exhausting into Vacua

There exist simplified representations of flows from jets, such
as that of Mirels and Mullen (1962) using the concept of hypersonic
similitude, and that of the Convair/Astro group, using the concept of
simple source flow. These methods aim at representing the flow of
jets at large distances from the nozzle. There are other methods which
deal with the flow close to the nozzle, notably the method of character-
istics as employed by Bowyer (1958). There is a large regior of the flow,
however, which is intermediate between these two zones of application,
and in which either method presents difficulties. To carry the method
of characteristics downstream for thousands of nozzle diameters is
impractical. To employ the source flow concept properly requires that
this flow be matched to the initial flow conditions close to the nozzle,
but this region is just where the simple source concept is not valid. The
same is true of the hypersonic similarity method. For thése reasons a
new approach has been taken in which the rigorous non-viscous equations
of motion are solved by using an asymptotic series expansion ia terms
of reciprocal powers of r, the radial distance downstream measured
from the nozzle. The first two téerms of this expansion are equivalent
to the source-flow concept of Miréls and Mullen (1962); higher terms in
the series permit the flow to be matched to the flow close to the nozzle,
and give a sound estimate of the errors invoived in dropping higher
order terms from the calculations. A brief account of the method is
given in the paragraphs below, while a more detailed description is
given in MITHRAS report No. 376A.

The basic equations for inviscid compressible flows are de-
veloped by Tsien (1958). The natural coordinate system for this
investigation is spherical, with the origin located at the rocket nozzle
and the x3 axis directed downstream along the nozzle axis (see Fig. 3. 2).
The flow is rotationally symmetric around the x, axis, and has a ve-
locity v along the radius r and a velocity v at right angles to r. The
equations of continuity and irrotationality take the following form in any
plane w = const:

{az ’_ uz ig - uv {E-Y. + -]L 9_‘1} + { az - vz} l 3_v
or or r 3 r 09
aZ
2 - -—r-{Zu + vcotO} (3. 1a)
v 1 0du v
—— o~ - w— t - = 3.
or Y = 0 (3. 1b)
u = radial velocity

"

angular velocity

local sonic velocity
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X3=r COS 6
Xp=r SIN G SINw
X, *r SING cosw

Figure 3.2. Coordinate System for Jet Flow
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The equations of motion can be integrated independently of (3. 1) to give
a relation between the magnitude of the velocity and the thermodynamic

properties of the flow:

2 _y-1 2 2
a® = = c [1 - (U/c)] (3. 2)
U2 =u2+ vz

ratio of specific heats

2
"

c limiting velocity of flow

Equations (3. la) and (3. 1b) are homogeneous in dimensional velocities as
well as r, and may be normalized by dividing by ¢ y*%, where y" is a
reference length which will be taken to be the throat radius of the rocket
nozzle. All velocities can be replaced by (u/c), (v/c), and r by r/vy*;
this substitution will be assumed in what follows. The solution of (3. 1)
by asymptotic expansion is carried out by expressing (u/c) and (v/c) in
the form of appropriate series. These are:

o
2 = Z c £ (8)r” én (y=1) £, (8) =1
e £ (6) =0

Y- i £ (g) r-2n =1 e, = [1-2n(v- 1)
- nTe () = dlde

(3.3)

The form of v/c is not independent, but is picked so that, together with
u/c, it satisfies (3. 1b). The series (3) are now substituted in (3. la) to
obtain the equations for the f, which result from setting the ccefficient

of each power of r equal to zero. The terms with a require the use of
(3.2). The result of these substitutions is to show that f; (8 ) can be an
arbitrary function of § while the higher order {,, are algebraic functions
of f} (9) and its derivatives.

The thermodynamic properties can be expressed in terms of the
solution (3. 3) by using the standard relationships of isentropic flows.
Pressure, density, and temperature in the jet flows are given to the
first order by:

9 MC 63-80-R1
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5T
/ {z-27)(-1))}
plp. =
o rZ»y
1
7—[
{z (3-2v) (- fl)} - (3. 6)
ple, * > :
r
2 (3-27) (1))
T, =0
r J

To investigate the matching of asymptotic flows to near-nozzle
flows, it is necessary to express some properties of the flow to higher
orders than the first. A convenient propérty for this purpose is the
reciprocal of the square of the Mach number, a2/U2, It contains in the
first term the function f, (6) as a linear factor. The near nozzle calcu-
lations of Bowyer (1958) give (U/a) explicitly and thus provide a simple
way to determine the form of fj (8). The formula for a2/U2 = (1/M?4) is,
including the second order term:

1 (=10 06=-27v)(-1))
M2 RACERY
22 2 )
+ {36206 —2(5 - ay) £, - £ }. (77._)
2r
(3.7)
where
2(5- 411, =
Ef2+ B £f cot0+ T 2+ D £ 1y
1 17 1 1 11
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N N e s o LT s B S - -
N S S B B i s i




D BE N Fata L o) Rkttt B

ot bogdett S Fdantin’s @i

R

s U Aut o

52t 10t bt et 8t ittt

%

and

>
"

-3 -2v% (@2y-1)

v
"

(3 - 29)

>~ 4 -3y
¢ = 7=T

(3 - 2%)

To match flows it is first necessary to ~t.0ose a suitable form for £,(6).
This is most easily explained vy refereice to the sketch of Fig. 3.3, The
flow emerges from the nozzle at the left under known conditions of Mach
number ind angular distribution. The flow expands to some maximum
angle @), and distributes itself in a fan-shaped pattern of streamlines
which eventually become radial. The pattern near the nozzle is that cal-
culeted by Bowyer (1958); it is straightforward to read off values of
Mach number and compute 1/ M2 for varying 6 at constant radii for
comparison with (3. 7). For a particular nozzle a plot of these .oints

for r = 60 is shown on Fig. 3.4 (normalized to 1.0 at 8 = 0). From
(3.7) it is seen that in the first approxirmation this curve is the function
f1 (8). The near nozzle computations thus indicate the general form of
f1 (6). They suggest several possible curve fits. It will be expedient

to choose the representation

4 (v - 1) _
G0 - iy (eI 5.9)
OM' = effective maximum expansion angle
A = normalizing constant

11 MC 63-80-R1
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This curve fitting function is shown cn Fig. 3.4. The particular form
chosen here lends itself to easy computation in the applications that
follow.

Having picked a suitable form for f; (8 ), one can now match
flows. For this the nozzle is that of Figs. 4, 5, and 7 of Bowyer
(1958). The flow emerges with a semi-divergence angle of 159, a
nominal exit Mach number of 2. 843, a nominal area ratio (exit to
throat) of 5:1, and ay of 1.225. If the asymptotic series is a Correct
representation, then the matching problem reduces to the proper
selection of two parameters: y", the throat radius; and the nominal
angle of maximum expansion, 8 M. The first matchmg is done along
the flow axis (8 = 0) to obtain an effective value of y*. For this,
formula (3. 7) can be reduced to

]

1
(57 o

(=1 (= M) 2 (v L 8ly-1)
RCTR) [H{ 2t )+ T st }-

()
—tey ] (3.9)

Although this fofmula is depéendenton@ M it is not sharply seénsitive to
it; a value of 64 can be picked based on maximum Prandtl Meyer
expansion angles, and then adjusted later without upsetting the first
calculations.

The value of y* is a. first taken to be the nominal value, and
then adjusted slightly to obtain a curve fit at large r. The résult of
this process is shown in Fig. 3.5, in which the solid line is 3.9 and
the dotted line is the first term (the so-called linear solution). It is
seen that the second order solution tenis toward the linear as r gets
large, but that convergence is not rapid. The exact calculations are
taken from Bowyer (1958) and are shown as the encircled points. To
obtain a fit, a value of y* was picked such that equalled ye, the exit
radius, divided by 2. 22; the nominal factor is va = 2,24. This result
promotes confidence that the 2nd order solution is adequate to match
flows near the nozzle, and that the first order solution is quite
accurate for r > 500. Below a value of r =7, exact flow deviates
sharply from the asymptotic; this point corresponds to the arrival at
the center line of the Mach wave from the lip of the nozzle. It is to be
expected that such deviations would occur since the asymptotic flows
are assumed to issue from a point. It should also be noted that the
point of origin for measuring r is displaced downstream from the
nozzle. The origin is found by passing a line through the nozzle lip at
an angle of 8) and locating r = 0 where this line crosses the nozzle axis.

13 MC 63-80-R1
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Figure 3.4. Asymptotic Jet Expansion Theory Matching Flows with
Near- Nozzle Calculations.
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The next step is to select an effective value of 8 ). This is
done by exam'ning the function (1/M2) at r = constant and picking 8 M
to obtain the L _st fit for the variation of (1/M2) with 8. The adequacy
o1 this procedure can then be checked by comparing the flows at other
values of r. In the example here the near-nozzle data for r = 130 were
used and gy picked to be 117. 59, The variation of 1/M? with@ at
r =139 is sl\gownon Fig. 3.6, together with the rigorous near-nozzle
calculation. As a check, a similar comparison is plotted for r = 42. It
appears that the agreement is good, and that the small changes observed
are adequately represented by the second order theory. The linear
solution, representing the flow as r - %, is shown on Fig 3. 6 as the
dotted line. It should be noted that the curves are normalized to equal
unity at @ = 0; compared to the values at the axis, then, the second
order effect is to reduce (M)Zg = 0 /M2 below its final (linear) value.
However, by referring to Fig. 3.5, it is seen that the second order
effect is to increase the values of (l/MZ) over the linear values on
the axis. The two effects tend to cancel in the off-axis regions. Thus
it can be said in the present examples that the linear solution approximates
the exact solution to 10 percent or better for r = 500, and 6 ranging
between + 1009, and that any error wili become a successively smaller
percent as r increases.

The result of the investigation of this sectionis a set of asymptotic
formulas which give all flow properties of jets in the regions of "'inter-
mediate” flow and far downstream of nozzle exits. The method pravides
estimates of errors. The validity and accuracy of the linearized
asymptotic formulas are established. The pertinent formulas are (3. 3)
for velocities, (3.8) for flow distribution and (3. 6) for thermodynamic
properties.

In concluding this section, three properties of iet flows arec
developed which will be needed in later calculation of plume dynamics.
These are the mass flow, total pressure force and the total momentum
of jet flow across downstream boundaries. The boundaries in question
are spherical (at constant r) and bounded by circles of constant 8 ;
an example is the right-hand boundary of Fig. 3.8 . The horizontal
force at the boundary arising from pressure is given by

.0
Fj = 2mr 3 cos & P; - dy
o
2 6
=2wr S sin® cos - pj a6 P; from eq. 3.6
o
= h (6; 6 . 3. 10
g, h are the functions. mj is the total mass flow of the jet and c;
its limiting velocity. ]
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The form of h and g are easily determined; the main result
needed here however is that Fj has no zero order term, but goes to
zero with r as (1/r)2(¥Y=1), It'is understood that this is the first term
of an asymptotic series, just as are equations 3. 6.

The second property of interest is the integrated mass flow across
the same boundary. In the first approximation it is

0
rﬁj(G) = Zﬂ'r2 S pjuj sir@ de
0 ¢ 1

. P ¢ yo—1
2rh, (B;) (.5.3..)5 (-2n)Yj7" sinede
(o]

cos B - cosBp\ D
mj{l—( ) } (3.11)

1 - cos EM

The inass flow hetween 9M and 8 through a spherical ring would hence
be m. — m.(0); expression 3. 11 is the first (zero order) term of an
asymptotic Jexp¢n51on.

Finally the integrated momentum across the boundary between 0
and 6 may be computed as

M) = § {drhj(O)/dO}cj cos 9 do (3. 12)
1 ~cos®
= m.c. [l - gs(e)‘cose + ra M )(g6(9) - 1)-|
J ] J
where
_ cos 8 - cos BM
g(6) = I -~ cos

M
3.3 The Inviscid Plume Equations

The photographic evidence of Rosenberg (1961) shows the plume
to be roughly parabolic at the head, tapering downstream to a wake
having a maximum width, Since the forward speed of the missile is
highly supersonic, the flow field around the plume is hypersonic, at
least as far back as the reglon where the hypersonic parameter (M° ¢°)
1s of the order (1). Here MO is the free stream Mach number, and
a° is the local slope of the plume surface in radians. For a typical fcr-
ward speed of MO = 7, 0 = 8°; this means that the greater part of the
head of the plume is subject to hypersonic flow conditions; this fact
will be assumed in the initial analysis. For the purpose of setting up
force and momentum balances the division between the outer flow of
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the free stream and the inner jet flow will be assumed to be a surface
located approximately at the contact surface shown in Fig. 3.1. The
first step is to set up a force-momentum balance which will determine
the location of this surface. Following this, more detailed considera-
tions will position the inner and outer shocks and fix conditions in the
merged layer. A force-momentum balance normal to the piume sur-
face will consist of three parts:

(a) the hypersonic pressure reaction as the freestreain enters
the merged layer;

(b) the hyperscnic pressure reaction of the jet flow as it entercs
the same layer from the inside; and,

(c) the centrifugal pressure of the mass flow in the merged
layer.

The pressures (a) and (b) will be termed P;C\)AL and pML, J» respectively.
The centrifugal pressure (c) can be obtained from the centrifugal force
(outward) per unit arc length along the plume, designated AF/AS; this
is the force which would be exerted on a strip of length 2nr sin 8 and of
unit width, assuming the strip was straight so that the pressure forces
were additive. The coordinate system is sketched in Fig. 3.7, and is
taken to be consistent with that of the previous section. The normal
force balance states that (a) equals the sum of (b) + (c) at every point,
or

AF 1
PmL,j ¥ A5 Zersme (3.13)

o o
P ML
The pressures are given by the hypersonic formulas:

- ooMOZiZOp
pML = TP sin

2 . 2
. = 4 p.M. sin o. 3.14
PML,j = %5 PN 3O (3. 14)
( )0 = free stream conditions
( )j = jet conditions

for o°, oj, see Fig. 3.7

It is straightforward to show that

AF  _ ™ML VML

x5 T (3.15)
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M,y = mass flow in the merged layer
ML - 2verage velocity of the merged layer
R = radius of curvature (+) cf the plume

surface in the (r,0 ) plane

Putting (3.14) and (3. 15) in (3. 13, and normalizing by dividing by P
(the chamber pressure of the rocket motor), one gets

o ” P.
29_ gin“g° = v. (=4) M2 sin®o,
P J P J J

c c
m,,, V
ML ML | 1 .1
+ 2 2nr sin® R (3. 16)
p ¥

where both r and R have been non-dimensionalized by y%.

and
0 .
q = free stream dynamic pressure
8 = o+ O'j (see Fig. 3.7)
1 dr _
=30 = - cot of (3.17)

Equation (3.16) gives the inviscid plume surface. It is a second order
differential equation for the spherical radius r as a function of 8. The
second term on the right accounts for the centrifugal pressure, and
adds considerable complexity to the equation. The second derivative
appears in R, the radius of curvature; furthermore the factor myf], times
VML is not constant, and must be obtained from an independent rela-
tion. In the course of solving the equation a simplified relation was
first used, obtained from (3. 16) by dropping the centrifugal term.

The results of solving this equation did not show a close correspondence
with the data. Also it is possible to show that the centrifugal term
should be retained on the basis of an order of magnitude analysis. The
solution given here consequently will be for the full second order re-
lation {3.16).

The solution of (3. 16) requires expressions for (p; /p ) MJ2 and
(m MLVML) The first is obtained from the jet flow functlons of the
previous section (using only the linear approximation as given in eqa.
3.6 and 3.7). To obtain an expression for the variation of (mh \q, VML)
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one can set up an integral force-momentum balance in the axial direction.
The control volume in which the balance is to be computed is shown in
Fig. 3.8. The "ingoing" quantities are free stream pressure and -
momentum over an area of wr2 sin2¢, and the motor pressure and
momentum. These arve balanced bv the outgoing momentum of the
merged layer, the outgoing momentum of the jet flow from the right

hand boundary and the jet flow pressure over the same boundary.

The ingoing quantities are

2 . 2 o 04,2 2 2
mr sin 6(p + p U7) + Y ex (pex+ peerx)
2 mylp [zwq"]pcr)zsin"*e + cg.] (3. 18)
where
° o, .02
qo = 'Y-z- p M"~ = free stream dynamic pressure
Cg, = vacuum thrust coefficient
- Vacuum T;rust (definition)
™Y
2
- (pex+ Pex ex)
Pe

( )ex indicates conditions at rocket motor exit.

The approximation made in (3. 18) is that pO/qo is small, i.e., the same
as that made in the hypersc iic formulas (3. 14). The outgoing quantitiesare

. o .
[mMLvMLCOSG + Mj(9) +Fj ]
. o .
mMLVMLcosa = outgoing momentum of the merged layer
M.(6) = outgoing momentum of the jet flow across the
J right boundary of Fig. 3. 12 which can be ob-
tained from the asymptotic jet formulas (See
Eq. 3.12).
VML = average velocity of merged layer.
rﬁML = average mass flow in merged layer.
m, is mass flow of rocket motor and is constant;
J n’lML varies withlocationalong the merged layer.
Fj = pressure force of jet at right boundary; it can

be obtained from the asymptotic formulas of (3);
itis to the lowest order term (see Eq. 3. 10):
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The expressmns for MJ(B) and F: are the first terms in the asymptotic
series in 1/ rzn(‘YJ . Mji(e) st’arts with a zero order term, and Fj
with one of first order, which may be dropped by comparison in the
approximation here. The horizontal force balance can now be written

as
my+® p_[2 qTp, 1) sin®e + CS |
= (m . ML) cosco® + M(S)
and
o _ 4 2
CF = Mj(GM)/n'y~ P,

The expression (mp1, VML) can now be put in terms of r, @, and a°:

m v 1 2 5cos @ + cos @
ML ML . [Zr sin29+ p.('y.)gs( 5 M)
TYyEp - coso J
¢ (3.19)
where
F =N« (r/y*); k(v;) given below

On substituting (3. 19) in the normal force equation, (3.16), and ex-
pressing R (the radius of curvature) in terms of derivatives, one gets
a second order non-linear equation for the plume surface. Using the
variables ¥, 6 the equation can be written

145 | {1 L2 (df)z} _ 47%sin@ (a)° (b)
v Ute® @
where
. cosd dr
a = sin@ -~
- a9
2 .
_ sin 28in0® cos® |, dF 2
b = -——-—- (T) + = ¥} + cos @
viv., 6 )g4(9)
A e
-2
2r
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_ (5 cos 8 + cous 8,,)
c = Zt-z sinZO + p('yj)gS(O)‘ z M
: ) Sp('yj) ) rr'xjc.
viv:, 8 = ——a— ) Mr) =
J m -zu- coOs M) J .n.y::: pc
cos § -~ cos 6 2. 1
) = L A I
g T - cos GM ’ > 'yj+l J
. =~1
\ ‘YJ
or in functional notation
1. dbr -
L. 27 - F{r, e,a@;y.,eM} (3. 20)
r de J

This relation contains, in addition to the coordinate variables (r,8), only
two explicit parameters, ('y-,GM), and these are fixed by the gas constants
of the rocket motor exhaust, and by motor geometry. The effects of

all other parameters, i.e., combustion pressure, motor size, forward
speed and altitude, are contained implicitly in ¥. From the definition

T = (qO/pC)I/Z(r/y*) it is seen that the operative parameter is (qO/pC)l/ZIY*,

and that itis simply a scaling factor. For a given motor type, then, a
single computation will give the plume shape for all (high) altitudes, all
motor sizes, various chamber pressures, andall (supersonic)flight spceds.

It should be emphasized that (3. 20) is based on hypersonic flow
approximations, and therefore will not apply to the rear portions of the
plume where the slopes are of the order of 1/M or less. It is also true that
in the downstream region of the plume the concept of a layer contain-
ing both exterior and interior shocks does not apply; the exterior shock
will become an acoustic wave propagating outward at the mach angle,
while the inner shock will curve in and remain near the axis (see Fig 3. 1).
The large region of flow which is thus opened up between thern can be
analyzed using appropriate techniques, which are those of the linear and
second order theories of supersonic flows.

Solutions of (3. 20) are presented in the next section. In addition to
the positioning of contact surfaces which such solutions represent, it is
also possible to derive simplified properties of the double shock layer
from the inviscid model. By treating the layer as if it were a mixture
oi the ‘two gases, instead of being separated by a contact surface, it is
possible to estimate the overall thickness of the layer and its average
properties. To this end an expression can be written down for mjyj,
the mass flow in the merged layer, which is the sum of contributions
from the free stream air and the jet; it is given by (see Fig 3. 8):

25 MC 62-80-R1




My ° Moir. ML et Mi
-~ 2?
= p"UG?:rt"sinze + mJ 35(9)
or
th =l
ml\flL = 2r0 sin 9 + gs(e) (3.21)
j (U /cj)u('rj)

® (yj) as in Eq. 3.20

Using (3. 19) and (3. 21), VML can be expressed as

b VRPN (i A e I (3.22)
C. j v m :
j my*p,, ML

mlys) (3.19)/(3. 21)

The next property to be computed is the weighted average stagnation
enthalpy which, neglecting viscosity and heat conduction, is

_ m_. m. .
(ho)ML" t;n = ho-air * rJ:t L ho' jet
ML ML J
or
. o -2 . 2
mML(ho’ML _ (U /Cj) T s8in” 0 N Sf. . 23)
. 2 mly;) F2
mjcj J

Recause of the relation hetween stagnation enthalpy, static enthalpy and
velocity (h, = h+ 1/2V®), one gets for the enthalpy of the combined
gases in the merged layer:

phMLhML 1 (3 19)2
= (3.23) - —_— ‘(3‘2'5 (3. 24)
rijcj 2 5(75) *
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The average pressure can be expressed using the notation of the normal
force balance (3. 13):

(8]
PmvrL T PMmL,J
PML )

which gives

p My, V \
ML sin%a® < M~ MI‘)( ‘ ) (3. 25)

qo Try*zpc 4T R sin®

The thickness of the inviscid double shock layer may now be estimated.
Using 6ML to indicate thickness measured normal to the plume surface,
a mass flow balance gives

rhML = (27nr sin6) 6MLpMLVML
or .
m
6ML * 7w sinNGH-J p \%
ML "ML

Next, using an averaged equation of state

:(7 PML

0 1o .
ML -V ML ML

the expression for &)f], may be recast in terms of quantities already
obtained:

Y- '
< ] my;) 5 l?ML .(mMLhML>( ¢ V(S (3. 26)
ML 2T 8in 0 \ m, C;‘ J\PML VML/

in which the baired quantities are non-dimensional, given by multiplica-
tion of (qO/pc)l Z/y* into dimensional quantities. In functional notation
3. 26 takes the form

- T . O/c.
EML » F{rr es‘Yjv eM' (U /CJ)}

This is similar to the form 3. 20 except for the appearance of a new
parameter (Uo/cj) the ratio of free stream velocity to limiting jet
velocity. It is interesting to note that this parameter influences the
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thickness of the double shock luyer but not, accordmg to 3. 20, its
position. Velocity ratio (U /rJ) is equivalent, in the hypersonic approxi-
mation to the root of the ratio of stagnation temperatures; specifically

C_ T_\t/2
\/

pan‘

An extension of the analysis will give the individual shock layers,
i.e., the properties of the air layer between the contact surface and
the outer shock, and the exhaust gas layer on the inside. Assigning
the symbol ( )air to the air layer and ( )jet to the inner layer, one can
write four equations for the two layer th1cknesses and the two velocities
in the layers. They are

ML © Sjet, ML Yt %air,ML
Miee ML - 2mrsing (8 vy MPjer ML) Viet, ML)
Moir, ML - 27Esin00 0 ) Poie, ML) (Vair, M)
My VML 5 Myer, ML) Vet M)+ (M50, ML) Vair, ML)

The above equations are (1) the total thickness, (2) and (3) the mass
flow in the air and gas layers, and (4) the total momentum. There
are thus four equations for the four unknowns which are soluble by
routine algebra. The left sides are all known from the previous for-
mulas; the densities on the right are obtainable from the pressure
and enthalpy by equations of state of the same form as given for aver-
aged quantities in the merged layer.

This completes the development of methods for analysis of plume
flow in the region of the head, based on inviscid flow theory. Numerical
solutions and computations using these methods are described in the next
section.

3.4 Solution of the Inviscid Equations

The equation to be solved is (3. 20), giving the loci of plume
surfaces; it is a second order equation containing a singularity ( the
denominator (c) of (3. 20) passes through zero). The boundary con-
ditions are two in number and are applied at the exit of the rocket motor.
The integration is best carried coutby machine using standard procedures;
that used here is an application of the Runge-Kutta method expressed
in R, I, P. language on a ReComp III computer. Numerical resultsare best
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presented in graphical form showing loci of contact surfaces, singu-
larities, shock layer thicknesses, etc, Before passing to the final
results, there are two points to be mentioned which are necessary to
the understanding of the integration and the interpretation of the calcu-
lations.

The correct boundary conditions must be in accord with the
representation of the jet by the formulas of section 3.2, The sketch of
Fig. 3. 3 shows the situation. A necessary conditic . at the start of
computation is, at 8 = 8y, that T sin 8, should equal (qo/pc)1/2,i. e. that
the curve start at the lip of the nozzle. The second condition on the
slope is arbitrary. However, by definition a high alti ude plume is
such that the value of (qo/pc)l 2 is very small; the details of how the
contact surface starts should not be influential in the final result.
Consequently the curve will be started for # = 8,,, and ¥ - indefinitely
small, a set of conditions which give a determinate solution. The start
can be approximated znalytically by F = a (6, - 6)0. By substitution
in Eq. (3. 20) it can be rhown that a and n must have the foliowing values:

2
a= b3 (y sin 8 -Z}Lb)l/2
3(2 sin”8_) m

where

o
It

(sin Om)/( 1 - cos Om)

Y: &, as given in (3. 20)

n=3

These values can be used to start the machine computation at some
(small) value of T, close to 6 =6,,.

The second question is that of the singularity in Eq. (3. 20)
when the denominator (c) is zero. Inspection of (c) shows that when
8m < 1/2, the value of (c) cannot be zero for finite F sin 8, However,
for 8, > 7/2 there is a locus of points for (c) = 0 which the plume-
curve must cross. Py referring to Eq. (3. 19) it is seen that (¢c) =0
would make the momentum of the merged layer equal to zero unless,
at the same point, the slope ¢° of the contact surface is vertical.
Physical reasoning thus requires that the plume curve (contact
surface) pass through the locus of singularities vertically, It can be
shown that the form of Eq. (3. 20) is such that if the plume curve
approaches the line of singularities at an angle other than n/2, the
radius of curvature will rapidly become small, turning the curve
toward vertical and keeping the sccond derivative finite; the situation
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has a '' static stability.'' In practice it was found, in machine
calculation, that if the interval of computation did not fall exactly
on the line of singularities, then the computation proceeded across
the line vertically without special attention. The details will be
illustrated by a specific example.

For specific computations, a single value of yjet will be used:
Yjet = 1. 25, corresponding to the value for exhaust gases from a
lox - RP - 1 motor. The values of 0,, will be varied in accordance
with the following scheme: if it is assumed that exhaust nozzles have
parallel flows at the exit, then 8, can be taken as the maximum
Prandtl - Meyer expansion angle for yj = 1. 25 and for a Mach number
equal to the jet exit Mach number (M3 EX). Varying (M3 EX) will be
equivalent to varying 0., ( the relation between M3y EX and 8, is
shown in Fig. 3.9). Values of My gy of (2,3, 4, 5) will be used
corresponding to 6., of (150°, 120. 5%, 99°, 83°, ). To apply
these results to divergent nozzles it is only necessary to select the
proper 8y, and interpolate; the selection of 8, for rocket nozzles is
described in detail in section 3. 2.

The first results are shown in Fig. 3. 10, which gives the plume
shape (contact surface) near the nose for My EX = 3. This shape
starts out at an angle greater than n/2, becomes vertical, then starts
back; the locus of singularities is drawn in to illustrate the point
discussed previously. The coordinates are non-dimensionalized by
ho/pc)l7z/‘;*. and denoted by barred quantities.

The next figure (3. 11) zhows a larger section of the same plume
and compares it with the early calculations which neglected centri-
fugal pressure in the merged layer {(equivalent to solving the first
order equation (b) = 0, as defined under Eq. 3. 20). It appears that
the simplified calculations seriously underestimate the size of the
plume (30 % - 40%in terms of nose radius); it also can be shown
that the behavior of the contact surface as 8 decreases is basically
different with the centrifugal term. It is concluded that the centri-
fugal effects must be accounted for to obtain realistic results.

Fig.3. 12 shows a family of plume contact surfaces for y;j = 1. 25.
A one parameter family is sufficient to represent all possible rocket
plumes, at least in the forward regions. The parameter 8, is
tabulated on Fig.3. 12, as well as the corresponding value of the exit
Mach number from a non-divergent nozzle. The contact surfaces of
Fig. 3. 12 may be used as the bases for investigation of the thickness
of the inviscid shock layers, the effects of heat conduction and
viscosity, and the continuation of the plume flow downstream of the
head wave.
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3.5 Comparison With Flight Data

The technique of Rosenberg et al (1961) provides scaled photo-
graphs of the chemiluminescence given off by rocket plumes at night.
Assuming that the outer edge of the luminescence defines the outer edge
of the gaseous plume, the nose radii as determined by Rosenberg
may be compared with those obtained from the calculations. It is assumed
that the rocket motor can be represented by the parameter Mjex = 4
and Yj = 1.25, the nominal values for an Atlas sustainer engine.

The effective nose radii of the calculated plumes are determined
in 2 manner similar to that used in obtaining nose radii from photographs.
The nose is assumed to be roughly equivalent to a parabola; the parabola
constant, which is twice the nose radius, is evaluated by replotting the
curves of Fig. 3.12 in terms of y2 vs x. The slopes are then the para-
bola constants, as shown in Fig. 3.13. Using the value of R for
Mjex = 4, the nose radius is given theoretically by

Rp .
— =,26‘\/’Pc, YO = 1.4
y* 2.
o Y; = 1.25
M. = 4
jex

This relationship is plotted on Fig. 3. 14 together with the data available
from flight. Included among these data are several flights and two dif-
ferent missiles. Also shown is the curve from the blast wave theory

of Hill and Habert (1963). It is seen that both theories approximate

the data adequately, particularly in view of the uncertainties involved

in the data. reduction.

3.6 Discussion

It appears that the methods of flow field analysis developed in
Section 3 are capable of providing plume shapes in agreement with
the known data and with the blast wave theory of Hill and Habert. The
flow field technique provides, in addition, formulas for the distribution
of thermodynamic properties in the air flow, the jet flow, and the
merged layer (as far as inviscid mechanics is applicable). The de-
velopment here has concentirated on the frontal regions of the plume,
since this is the initial disturbance in the creation of the flow pattern.
There are standard methods availabie for continuing the calculation
outward and rearward from the frontal regions, as for example those
of Witham (1950). Thc entire flow near the axis (trajectory) is thus
subject to analysis by these methods.
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There will be modifications of such calculations which account

for the influence and limits of some of the assumptions made here. The

estimation of viscous effects . 1ust be based on studies of the Navier-
Stokes equutions as applied to this problem; Section 4 is a detailed
investigation into dissipative effects. Another modifying condition is
the stratification of the thermodynamic, chemical and electric proper-
ties of the atmosphere and their effects on plume flows. In addition
the influence of the earth's magnetic field on the electrified par‘icles
in the flow becomes relatively larger with increasing height. Finally,
~roper application of the theory requires some estimation of the limit

of validity of continuum mechanics which underlie the present approach.

This matter is taken up-in Section 5.
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4. MIXING LAYER STRUCTURE AT THE NOSE OF THE PLUME

4.1 General

One important source of observables associated with the higli-
altitude rocket plume is the mixing of the exhaust gases with the ambient.
This mixing occurs in a layer whose mean surface coincides approxi-
mately with the contact surface of the inviscid analysis. In this layer
the effects of diffusion, viscosity and heat transfer determine the
character and properties of the flow. The thickness of the mixing
layer is fixed largely by the Reynolds number and a typical plume
dimension such as the radius of curvature at the nose. Above 100 Km
the Reynolds number is usually less than 100 and the mixing layer
fills the entire region between the inner and outer shocks of Fig. 3.1,
at least for an appreciable distance back from the nose.

Calcul=z icns of mixing layers in this flight regime near the
limit of contint: n flow have not previously been published; the follow-

ing analysis refresents the first computation of its kind. It is related

to several o’ ""merged-layer" analyses of the flow about solid spheres
(Levinsky a:.J .oshihara, 19v]; Keo, 1963), but-there are scveral essen-
tial differences -due %“c the clange in the inner boundary conditions.

In the first analysi~ ** 1s necessary to restrict the study to the region

- of the nose because v. mathematical complexities.

Sections 4.2 and 4. 3 present the equations and approximations

which are employed to describe the flow in the merged layer. and

explain a method which has been developed for solution by numerical
integration which exploits a set of asymptotic (analytical) solutions.
This method has been selected on the basis of experience with several
méthods, and is felt to provide the simplest and most easily applied
program for obtaining solutions. In the process of developing numeri-
cal methods, several sample solutions have been obtained which demon-
strate the adequacy of the equations to describe the two thick shocks
merged with the mixing zone. In Section 4.4 sample results are pre-
sented which were obtained using an earlier method.
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4,2 FORMULATION OF THE PROBLEM

Tlie spherical system of reference chosen is depicted in Fig. 4. 1.
‘'The velocity components are shown in the positive directions. The flow
is axisymetric. The following simplifying assumptions concerning the
fluids have been adopted:

(a) The two fluids are two perfect chémically non-re:cting
gases, with constant specific heats

(b) They diffuse mutually following Fick's law, thus;
pv-Vc - ,,D/Vp- Ve - ,ﬂszc = 0
(c) The Lewis number is unity, and thus the expression for

the heat transfer vector is not changed by the mutual
diffusion of the two gases.

(d) The Prandtl number is %

(e) The viscosity coefficient is proportional to the square root
of the temperature

4. 2.1 Governing Equations

The variables describing the flow field are non-dimensionalized
by reference to the upstream conditions according to the following manner:

I . v u h H
p = = v = - u = h - H - T
P o0 Ve \'s wV
Z oo A
. LT Po P2
R Po = - 2 Py = ——3 (4. 1)
Poo Vo P oV

where the symbols with the subscript © denote upstream quantities, and
‘the overlined symbols denote physical variables.

The set of governing equations are:
(a} mass conservation equation.
(b, c) radial and tangeantial Navier Stokes equations

(d) diffusion equation
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(e) energy equation
(f) equation of state
(g) viscosity law

Explicitly in spherical coordinates they are;:

[ 1 9 2 1 ) .
a T 37 (pVI‘) + m— W (pu 51n9) = 0
i 2
ov pu dv u op
BaS Rl BRI
1 (8 dv. 1 u , av du ]
\KE{-a—r- [}LH _3-'1—. (r-a?+Zv+-a-9-+ucot9)
b
1 9 d ,u 1 9v . ° 2 v v 1 du
* ?’JE‘[”(’ ar (¥ * 1 w’]* T @& -7 -7 37)
TN . 9 3
-+ %;t[cote‘\rm—‘ (;) + -11_-3%) —% (v + ucote)]}
i du pu du puv  _ 1 3p ‘
et T W t Tt - T (4.2)
2 9 d 0 : 0
+ = 5.9.[%( + 55) -,}'% (r-a%+2v+3b‘l+ucote*«)]
C
d 2 u 1 av]) [ u 1 av ]
* a?{“[’v; () + ;w]}* 3;[’3? (¥) ;w]
T+ 2-"7 cotai[g-lél— —ucot‘e]
- ) o -
I dc Pu dc _ 4 1 (3 , dc o1 9 dc
[PY3r ¥ T 99 = % R‘;{a}' 3r) * 2355 W)
d,
1 . 2 -
2 dc¢ cot.8(1 - 2 sin“8) ac]
L *"[? 3r t Y :

cu[@n” 4 L v+ 2%}

o

[
wi v
~
<
HAa

+
"l

gr) )+ W] 4 (T uQ
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-% (v+u cotO)]

nle

pv dv 2 du [ )
+—;—[4-a?-?(v+a-y)+cot9 r-a?(

cotf Bh]} 1
="

+
| —
g7
—_—

Re

(4. 2 Cont)

]
[3(r-5— (—) + l-a-g-) + % coté (-5-5- -ucote)]
e
0
+p[;22- (v + ucote)2 +r [T (—)] +;lz('a%)
9 ,u, Ov 1 du
taw Pt roar w]
1 4[ 98 dh d . dh  8h
tr 3[3?['"5? tawlrag)t eyt
where
. _ Ov 1 du 2v u
H=h+ v + u
¢ [ p=rpn
where
R .+ (R -R_.)c
= 1 air as air
2T + -C e
air pgas Pair
I S
T

4.2.2 Separation of Independent Variables

The present method of separating the independent variables has

been used by several investigators (Hays 1959, Levinsky 1961, Kao 1963):

v = v cosf
o

u = u, sin 8

p = P,

B = B cos e
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A | by it

s eyt v e S g e AP O it 0 el ¢
|

h = ho cosze

2

H H_ cos B

p = P, c0826 + p, sinze (4. 3)

The quantities with a subscriptare functions of r only.

4. 2.3 Derivation of the Reduced Equations

In the system of governing equations the terms of order smaller
than A/Ror p/Re are neglected (A is the thickness of the layer).

The expressions assumed for the separation of independent var-
iables are substituted into the full system and yield the following set of
reduced equations, the only independent variable being r.

(pv)' + Erf (u+tv) =0 Continuity
pvvi + B = g (F W) Rad. Mom(l)
py = Eu+t v Rad. Mom(2)

u - 2 1
pva' + E(u+v) + Z(p  p) =gz (u) Tan Mom

pvc' = Tle' g— (Y Diffusion
pvH' = 1 4 wH'")' Ener
Re 3 gy
Py © Tph lst State
h 1
- Z . .
Bo= 2(3; T Viscosity
gas 2 1
C -——-s;i— + (1-c) ?—_-—1 — (4. 4)
Voo Mo A
H = h+v2 Tot. Enthalpy

As 2 matter of convenience the variables appearing in(4.3)are denoted
without indexes when the meaning of the symbol can be determined
without ambiguity. This convention is carried on henceforth.
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4. 2. 4 Boundary Conditions

The matching of the outside flow specifies the following variables

p =1 vsol u o= 1 c =0 h=_YZ_l -
A M
: Pa * P
which in turn prescribe
H = 1+ —2 1 - 1
- Yy, -1 2 Po = T2 (4. 5)
A M, Ya My

The boundary conditions in the inner edge are given by the inner
source flow. The inviscid system of equations is:

) (pv)'  + -;rﬁ (u+ v =0
pvv' + p;’ =0
) ; - pu(u + v)
pz o T (4. 6)
2
P, = Te(H-v")
pu(u+ vj 2 A =
pvat + ERWEN 42 _p) =0
H! = 0
c! = 0

This yields rigorously:

H = HG
c = Constant
- p
1 = Constant (4.7)
(H-v5)7G]
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The expression of the third constant deserves some attention.
The entropy of a perfect gas is given by the differential expression:

= , 1 dh dv

where S and v désignate entropy and specific volume respectively. dS
is independent of the mode of non dimensionalization, -and hence:

&S - Rper [7——1'1— '(li'xh + %]
or
S <S8 1
RIS
per p
S, being an.arbitrary constant which will be taken as zero. The appli-

cation .of this definition at the inside boundary yields a physical meaning
to the third constant;

p o
T =€ %g
(H-v?) G~ T

where SG is the enthalpy of the gas. The two constants HG and SG are
provided by the characteristic featires of the source. The specific
application of these conditions to-the numerical solutions will be made
in section4. 3. 4. Itshouldbe noted that the last condition is equivalent
to saying that the flow becomes isentropic along the axis of flow.

46 MC 63-80-R1




')

et

4.3 SOLUTION OF THE. EQUATIONS

4.3.1 Reduction to First Order Equations

By introducing the new variables
¢ = pHY W = pvly x= pCh  w = pu'

the system of reduced equations of the las* section may be recast as
the following system of ten first order equations:

v - p{£_+_> s ¥ } . (4.
v! = w/p

u' = w/p

C! = X/p

P5 = pa(u + v)/r

X' = (3/4)Re (pvx)/p

W = (3/4)Re (p} + pvv')

w' = Re{p [(vw)/p, + u(u + v)~/r] + Z‘(pzm - po}’/r}

and

H! = é/u

¢ = (3/4)Re(p:-ve) In

The ten unknown variables appear as first derivatives on the left side of
the equations. The quantities p and py on the right side are not to be con-
sidered as additional unknowns, but as functions of the ten primary un-
knowns; they are given algebraically in terms of the latter by

Po T PR | (49)
- ho L r4
s 2T T, ' ~
Pgas . 2 ]
—E82 ¢ + (1-0) —
where
= H - vz
ho = °
) 1 C R’gas + (1-C) Rair
r - 2 CC + (1-CY C
- pgas ‘air
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In the gé..eral case this system of equations requires specification of ten
constants of integration. If these can be determined at one point through
a knowledge of the values of the dependent variables at that point, then a
solution of the equ.tions is; in principle, determined. The problem
treated here however has some conditions given at the outer boundary
and the rest at the inner boundary. The handling of this two-point boun-
-dary value problem requires special attention, and is discussed in the
next sectinn.

The ten equations may be reduced to eight by extracting two inte-
grals from thes system. The equations for X' and ¢' may be combined to
give

¢'/9 = x+«x
¢ = k, X
Jsing the equations for C' and H', this last becomes

80

Hn = k C!
o 1
or
H = k,C + k, (4. 10)

This relation may be considered as another algebraic equivale.'c¢ ‘of the
type (4. 9); withitH, may be eliminated as an unknown. The equution for
H") may be dropped as well as the equation for ¢ ' since ¢ appears only
in the equations for H"‘ and $'. This leaves eight equations (the first
-eight of the set (4. 8), and eight unknowns (appearing as first derivatives
in the left ¢column), and eight arbitrary constants of integration. The two
constants k] and k2 of (4. 10) are arbitrary and complete the total of ten.
It should be noted that the linear dépendence of total energy on concen-
tration is a special result of picking the Prandtl number to be 3/4.

The values of k, and k, are determined from two of the boundary
conditions. given in the prevxous section. One condition is at the outer
boundary, the other at the inner. Specifically

ky = Hg -k
= 2 . |
k2 ¢ R s R
] (4.11)
where
YA = ratio of specific iieats in the ambient
HG = total enthalpy of inner flow; this is the constant

of the first equation in (4. 7).
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The integration of the eight equations can now proceed providing
a method is adopted which oveércomes the problem of two-point. boundary
values. A second problem will be encountered at the stagnation point

{where v becomes zero) owing to the nature of the first equatirn of the

set(4. 8). It can be seen that the value of p' will become either infinite
or indeterminate.

The two point boundary problem will be dealt with by using the
method of asymptotic solutions. at the outer boundary, and is taken up
in the next section. The solution near stagnation will be obtained by
series expansion; and is described in section 4. 3. 3.

4. 3.2 Asymptotic Solutions at the Outer Boundary

The method of asymptotic solutions is to linearize the equations
at the outer boundary, where the unknowns may be expressed as small
perturbations from the limiting boundary values. The resulting equa-
tions can then be solved by standard methods. The solutions will include
ten. arbitrary constants corresponding to thé ten boundary conditions
of the problem. As will be shown, seven can be 1mposed in.advance on
the basis of boundary values, while another can be fixed in advance by
relatmg it to the Reynolds number selected for the computation. The
remaining two can only be picked by relating them to. the inner flow

‘through numerical mtegratmn across the merged layer. How this may
‘be -done is detalled in this and the next section.

The asymptotic forms may be written as follows, using Aas a
modifier to indicate small quantities:

po= 144 P * (1‘/7AM,‘,7‘9 + bp,

v =-1+ Av X = AX

u = l+M W o= AW ‘
C = 4&C w = Aw . (4.12)

These forms are substitutéd in ‘the set of eight equations (4. 8); eight

'lmﬂar equations are obtained by rejecting terms of second and higher

orJers The result is

ap = Hnt &) AW} (4. 13)
AvF = AW ; AC' = AX; AX= —ﬂ(%)R‘e'Ax
, (M + ‘ 3
M = o; apy = XA . AW =(3) Re(op), - AW)
- (& + 4Av) 2 ,
Ad = Re {— Ao + 1) 4 2 py _pp )
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The linearized algebraic relations corresponding to (4. 9) are

4)0

‘ A-AC +(-—_ )Ap +<ZA_~AV

0 Pt S
A { 2 ) +k<A>f<4.14)
(‘YA-l)Mz 'HC- C=0 N\ 2y

() oro -t {(30)-(5)]

k

1 from eq. 4.11
1
— + Op

o
(o]
"

h
]

1+ Ap , Apnot needed-.

Now the equations for AX' and AC' ¢an be solved independently; they
yield

-(3/4)Re k3e ~(3 /4)Re r

SAxdr = ke (3MRer kg (4. 15).

AX

&0

where :1;‘_1 = 0

Another integrationis possible by combining equations for o', v' and P,

+ap' = 2p, + AV (4. 16)

. - Ap - Av ..
b, = T t K

where k5 = 0

These results may be used to reduce the set (4. 13) to three -equations for
‘three uisknowns. It is convenient at the same time to redefine the in-
dependent variable to be r = r Re and the symbol for differentiation to
bedldr = ( )V= ()" Re. The three equations for M, Av and Apare

-+ M
@ A - aV . Hout &)

(b) a2 oY - &) (4.17)

(c) mW+mV={-{m+Ap-zApo}
‘ J
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It should be noted that Re does not appear -explicitly in this set. These
relations, although linear and comparatively simple, cannot be solved
exactly in closed form. WUseful solutions are obtained by noting that in
the regions of interest we have r >10; and that what is needed is the be-~
havior of.u, vand p as t—+ ®©, This suggests a series expansion of the
solution in reciprocal powers of r, having the following form:

mo= D @@ [,

n=o

In this expression, the [An]n are functions of r, and will turn cut to be
solutions of linear equations with constant coeff1c1ents The power p. is
included to account for the fact that some solutions are not expressible
as integral powers of (1/r), and requi*-e a fractional power; p is taken to
lie between:0 and 1. Its specific value iz detczmined whén M is substi-
tutedin(4. 17), together with.similar exgpressions for Ap and Av. Because

of the large values of ¢ it will be sufficient to carry the determination of

the [Au]p only so far as is necessary to bring in the arbitrary cornstants
of integration; thus will turn out to be only the zero. order terms for Ap
and Av, and the zero and first order for Au. Inspection of the st (¢. 17)
shows that there will be five arbitrary constants of integratinn. '‘One is
determined at once by single iutegration of (b); calling it ko, it is seén
at once that k, = 0 is required by the boundary conditions. -Of the re-
maining four, two will not be determined by the outer boundary condi-
tions; the significant solutions of (4. 17) will contain. these two arbitrary
constants. The equations for the zero ordér terms result from direct
substitution, and are (for any value of p) ‘

By - [T =0
217 = 3 {fw,], - [a1)

@I+ (s

n
k)

‘(a:;[Apo]:o and AC frorn 4-14 and 4-15)

These expressions have constant coefficients and their solutions are
easily obtained. They are

[Ap]o = '[Av]'o +
3B2 A

[AV] o = kBe = z T, - l——? m (4- 18)
, . -T
[8a], = k9: » Ko

Mé.~ 1

2 o0
where B =
-2
TaMq
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Each of these terms has yet to be multiplied by its respective

{1/ )P, To determine the:p's it is necessary to examine the higher order

terms; it is found that the solution cannoct be continued unless, for the

kg term, p = 1; and for the kg téerm, p » 2/ (M% - 1). For the coi.stant
terms, k7 and k

there are no values of p which will permit the solution
to be continued ll;l a convergent series, and hence they are zero. This
completes the information needed for the asymptotic solutions, whrich can

now. be written out explicitly:

Mu - 1‘“{ 'f+-13§k A[Z +( zc )] ~(3/4)=
B

+ Chkg -(3/4;13 1
%B (1-1137)& | t

A } {¥3& @y . ¥ —3MBEL 1|
\v = —— +—= e o
B =1 P
[ kA a0k 2
1 %37 -(3/4)r, "8 _ -(3/4)B"¢ 1
Ap = Ty e 7 + — e + =9...
_ {B'—l ¥ )
Z .L\
A = ky e~ (3/4) T (4.19)
2 - (2-75) M5,
A from 4.14; B from 4.18; € = — . -
] Y My
- v = ;"Tz_'— r & > Jé

There are three constants ‘(;’k3 » kg and k,) ofintegration which are still
undetermined. The seven already deternuned are essentially fixed by

the six independent conditions at th¢ outer boundary and one (total enthalpy)
of the inner flow. 'I‘huavk3 X 3 and k, are related to the as yet un-
specified character of the mner flow. %ne condition can be applied as

" follows: select a Reynolds number based on the distance from the origin

to the outer boundary 28 determined, say, by the value of t at that point
where the denstty is 1% above free stream value; then settmg Re =t

and Ap = .0l in the asymptotic formula, a condition is obtained on

k and k This condition essentially fixes the scale of the flow; with
1t one of8 the constants say kg, can be eliminated. The two remaining
conditions are obtainable only by picking trial values of the k3 and kg,
integrating the equations numerically through the merged layer and thus
relating the constants in the asymptotic solution to the properties of the
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inner flow. To match a given inner flow it will be necessary to choose
two constants at the outer edge which give two specified properties of
the inner flow (in addition to the stagnation enthalpy, which is already
determined). This process is essentially the inversion 6f a rank two
matrix and presents no real problem once a series of integrations has
been carried out. A discussion of the integration through the stagnation
point and the inner flow properties follows.

4.3.3 The Solution Near Stagnation

As noted in the previous secticn, the expression for p' in the set
4.8 becomes sinjzular when v = 0. Ir numerical integration by machine
the consequence :s an instability of computation near stagnation. A
method of extrapolating across the unstablée band may be developed based
on a series expansion about this point. It is first useful to select a
point in the computation which is near the point 5f v =0 but before insta-
bility appears, and this. requires a critéria. From the first equationof (4. 8)
it is seen that both v and the bracket on the right should pass through zero
linearly with r, and at the same point. Using a scheme of linear extra-
polation, the point where v = 0 is estimated by

0 = v+ vn

0 = v+‘-N.-n—
where

r = r + n, r = pointatwhichv=0
so ° °

The value of the right hand bracket may be estimated similarly for the same

point:
rvef) + (L‘.’.‘L) N =o€
p )  \ P

|
(5 + Grea - 5) & -

The derivatives on the left are all available from the computations. The
value of € should go tc zero faster than v does. In practice however, it
may not. If this is-owing to computational instability then the computation
should be rejected after € has passed through a small minimum, thus
establishing the band-width across which the series expansion is to be
used. If on the other hand € does not pass through zero or a small mini-
mum for a given pair of values of k.3 and kg, then these must be adjusted
to give pairs of values for which € does become small, this process
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being essentially a restriction on the initial constants. Having arrived
at values of n and r, a series expansion may be employed. Let:

(v)o + (v)ln + ...

v

u ‘(u)‘o + (.u)'oﬂ + .. etc.

All quantities in ( ) are constant coefficients.

Substituting these in the set (4. 8) and letting (v), = 0, the coefficients
of the first order (first derivatives) may be determined in terms of the
zero order coefficients. The selection of both v and the right side of the
first equation to be 0 at r, is equivalent to two conditions; there are
eight remaining zero order coefficients which can be independently
picked, giving a total of ten conditions as before. The first order coef-
ficients thus determined will be substantially the same as the first de-
rivatives as computed from (4. 8) at the edge of the instability band, with
the possible .exception of the expression for ()], ‘which is given by the
expression

(p)y (W, [ 5 (@) 6 (p)); (W) (k)

{p). = a0 f e 0 @) + 3R ol o 1}

R AR TR e e
fphe’re
o e, + ) D g+ )yl )o‘ho).o}
pg)y = = o o2 TPl

"’o{ T’ ® () (w), }

(r), - é
(r) = 1 ’pair ‘R-ga.s b Rair)} (x),

- Z

Pair Pgas Pajr

{c +(C_ -C )'(c;)o}

R (B, [ o oy 5 W), 2w, (W), ]
T W T Wy i W T T
B o 0.
o 2C T
o, - 1B [0 e Te |y
B, | T, °l  v& “ty,-n| ®o
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This formula for (p), is non-singular and is given in terms of the zero
order coefficients at the stagnation point. If, however the values of u,
[s_etc., are used from machine results at the outer edge of the instability
bard, then ({for small n) the error committed will be of higher order than
‘the approxirnations given here. Thus a stable value of dp/dr is obtained.
whicli is consistent with thé conditions at stagnation. Of course the values
of thé quantities (u, p ---) and their first derivatives may now be used for
a linear extrapolation across the instability band to re-establish the ma-
chine computations with correct values of the dependent variables. The
integration may continue to the inner flow and be matched as described

in the next section. For completeness the remaining relations are given
here for the series solutions at stagnation:

n & - 3 d
(.W)0 must Z(u)o(p.)o,.ro

" ?Il

for '(v);o 0
(v), = (W) Mw), ) s (el g

(W)} = (3/41Re-(py);

(@), :'(Re/"ro> {(p,-»d(u)ﬁ + 2py), - Z(Po)o}

(©); = b0 lw), (Bp)y = (P)gl)l/x
() = () ), (Hy)y = @)/,
@, =0 (), =0

The algebraic relations give:

(p), = () (P) (b ),

: (h)), = (H ), 1
z

(h )

(H)o = —>C T A 90

P o 2
©, —E*— + |1-(©,]
o Voo o] MZ (Yaix; - 1)
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4.3.4 Matching Solutions With the Inner Flow

2 The dis¢ussion of inner boundary conditions in section 4. 2. 4 shows
that when inviscid flow is reached, the equations will automaucally
réquire the zero order enthalpy Ho to be a constant (HG); similarly

the value of C will become constant. The value of HG can be fixed

a priori by proper choice of k;, as given by formula (4-11). According

to (4. 7), then, there remaintwo dlsposable properties of the inner flow:
the value of C and of SG. This is the same number as the number of
availablé constants in the asymptotic solution at the outer edge i(i. e. k3
and kg). Thus it will be possible to match the desired values C and SG

at the'inner boundary.

The value of C must of course be one in all cases. The value
of SG, which is the entropy of the source flow, is a matter of ¢hoice.
‘Since the inner flow is isentropic it is useful to keep a running; check on
the entropy (S), as g1ven by

: (h ) Y "’I )
SR o b,g, - {4.20)

-and the total enetgy H When: these have becorme nearly constant in the
process. of. compt.tatxon. the inner boundary has been reached. Denoting
the final value of entropy by SG, it can be seen that it is equwalent to a
‘statemment of ithe chamber pressure of the source flow, since from (4. 20)
and the equation of state, and using the fact that hy = Hg at source

stagnation, -one ‘has:
_ < YG- )
Se/R G

e G G . (Yot \ - HG - )
2¥G PG, chamber

There now arises the question of what kinds of inner source flows the
solutions are capable of representing. It has been noted that the nec-
essity of integrating through the  dividing streainline (stagnation) may

place restrictions on the choice 6f values for k and k In this

regard it can be expected that ifthe asymptotzc for Zs {4. 19) are correct,
then any choice of k 3 k and k, will yield a flow that is regular at
stagnation (i. e. that any ungulag ‘behavior there is merely computational
mstabﬂxty) ‘This would leave full frecdom to match conditions on C and
Sg. The other quantities however, suchas u, v, p, H, and S, cannot

be specified, but must be accepted as determined by the process of in-
tegration. It can be shown for example that if the inner flow is to have

the same entropy along streamlines off the axis (i.e. ¢ # 0), then p

must equal pg; however there are not enough ‘constants to enforce this
condition. As a practical matter this lack is related to the 1ncox’1nstency

in- some of the second order relationships as discussed in the previous annual
report (ref. Hill and ‘Habert (1963)). The derails of the inner flow will have
to await the completion of a number of :solutions of the type discussed here.
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4.4 Results of Numerical Analysis

As noted’in 4. 1, preliminary results have been obtained using
an earlier method of calculation. Essentially this was to integrate
from both sides of the merged layer using .estimated properties of the
solutions as boundary conditions and then to attempt to match flow prop-
erties at the center (singular point) by adjusting the boundary values.
The final answer is obtained by applying successive corrections to

the eight undertermined gradients and the value of the radius at the

inside boundary. To that end, it is assumed that the value of any
characteristic quant1ty, obtained when the integration is stopped at

the singuiarity point, is a linear function of the corresponding initial
parameters with which the integration has been carried out. These
parameters consist of the four physically undertermined gradients

at the outer edge, the corresponding four gradients and the initial value
of the independent variable r at the inner edge. At the singular point,
the values of any characteristic quantity obtained by integration from
outside and inside is different. This difference is a linear function of
the nine parametérs mentioned above. The new values of the parameters
are obtained by computing the increment which must be added to each
in order that the difference be zero. Since there are nine parameters,
a zero difference can be imposed on nine characteristic quantities. The

latter computation is carried out by inverting a ‘9 x 9 matrix. The
computation is repeated until the differences fall below a small given

number. This scheme is sometimes referred to as the method of
influence coefficients.

It is assumed that at an altitude of approximately 180 kilometers

a missileis flying at 4 kilometers per second. The Mach number is

6.5 and the Reynolds number is 65. The pressure in the combustion
chamber of the rocket is 46. 4 atmospheres; its temperature is 3600°K
The exhaust gases have a ratio of specific heatof 1. 25, their molec;ular
weight is 22. The result-of the computation is presented on Figs. 4.2
and 4. 3. The influence coefficients scheme has been arranged in order
that the following characteristic quantities should match at the singular
point:

ps Vs 4, ¢, h, ph', pc’, pv', pu!

The total enthalpy matches by definition; the pressure term pg-matches

too because

Py = T(c) ¢gh

The second order term pj has not been required to match. It is re-
markable that the density, velocity components, enthalpy, and concen-
tration match with an approximation of 3/1000 or smaller and the
gradient with an approximation of 3 per cent or smaller.
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The sandwich-type structure of the merged layer is clearly
illustrated by the results shown. There is a thick outer shock,
0.9<r< 1.0 approximately, in which the thermodynamic variables p,
p and h rise to values very nearly equal to those for a thin shock in
airat M =z 6.5. There is an inner shock about haif as thick, 0.75<r
<0.80, in which the exhaust gases are compressed. Here also the
degree of compression is very nearly that which would be computed
from the Rankine-Hugoniot equations. The inner shock is thinner
because the temperature and hence viscosity of the gas approaching
it is very much lower than that of the free stream. Between these two
shocks is a layer across which the pressure is nearly constant. This
corresponds to the mixing layer in the high-Reynolds number flow:
The ""dividing streamline," v =« 0, is contained in this layer and
the gradient of v is very much smaller than in the shocks. At this
Reynolds number, however, the mixing éxtends beyond this region
into the shock waves and:the variation.of mixing ratio in the constant-
pressure region is only about 0. 2<c<0.9.

The structure of the merged layer at the nose of a high-altitude
rocket plume is now known for one particular flight condition. It i's
well enough understood that qualitative extrapolation to both higher
and lower altitudes is possible.

We recommend that additional and numerical integration of the
equations ‘be carried out to cover the range 5 < Re < 1000. We would
then be iu1 position to continue the solution away from the stagnation
point using approximate methods. The inner boundary conditions
would be given by the analysis cf Section 3.

The ultimate objective of this analysis is, of course, the pre-
diction of the observables generated by the chemical reactions be-
tween the exhaust gases and the ambient. Work on this can be started
immediately for those reactions for which the chemical kinetics have
been established.
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4.5 List of Symbols Used in Section 4

air

gas

air

A"

gas

per

nw n o

gas

-
-~

<

< £ <

gas

gd'\:cw

mixing ratio

specific heat at constant pressure for air
specific heat at constant pressure for exhaust gases

diffusion coefficient
specific enthalpy
total enthalpy

pressure terms

radial coordinate
radius of the outside sphere (see Fig. 4.1)

Reynvlds number based on the radius of the outside sphere
and upstream conditions

perfect gas constant for air
perfect gas constant for exhaust gases
perfect gas constant for any gas

entropy

entropy of exhaust gases

tangential component of velocity
radial component of ~elocity-
specific voiume ‘

ratio of specific };eat

ratio of specific heat for exhaust gases

g1s constant for the mixture of gases
angular coordinate

viscosity coefficient
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. SHOCK WAVE FORMATION BY
HIGH-ALTITUDE ROCKET PLUMES

5.1 General

The shockwaves generated by a rocket-powered missile in
high-altitude flight are associated with the plume rather than with
the body of the missile. As far as generating a disturbance in the
ambient is concerned, the rocket plume acts just like a blunt-nosed
body. Its size becomes very large at high altitudes; typical diameters
at an altitude of 200 Xm are several kilometers. Even though the
ambient mean free path at these altitudes is very large by laboratory
standards, it is still a small fraction of the plume diameter, so that
continuum models of the flow may be used, and the formation of a
shock wave is assured.

As the altitude and the size of the mean free path increase,
the plume size increases also, for a given rocket motor burning at
a constant rate. The simple blast-wave theory «f Hill and'Habert
(1963) predicts, however, that the plume does not grow as fast as
the mean free path, so that eventually a free-molecule -model of the
flow will have to be used and no shock wave will form.

The purpose of the work reported here is the development of
" an approximate criterion for the upper limit, in altitude, of shock
wave formation. It is generally agreed that this limit occurs in the
transition regime between continuum and free molecule flows. This
regime is the m¢st difficult one to handle theoretically and as Talbot
(1962) has pointed out, there exists no really satisfactory theoretical
prediction for the limit of formaticn of a well defined shock wave.

5.2 Hi&h Altitude Flow Rggimes

Figure 5.1 copied from Levinsky and Yoshihara, (1961) illus-
trates schematically the flow regimes encountered by a re-entering
hypervelocity 2-foot diameter sphere. The same range of flow
regimes is encountered, in reverse order, by an ascending rocket-
powered missile. The altitude for each regime is, of course, much
‘higher in the latter case, because the plume is much larger.

For the three flow regimes in the lower row of the figure,
.continuum theory applies and a shock wave is formed. Note that the
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shock thickness increases with increasing altitude and dec:easing
Reynolds number. The boundary layer thickness ¢ lsu increases and
in the highest-altitude continuum flow regime the ~hock wave and
boundary layer merge to gorm a single viscous layer between the body
surface and the free stream. Hill and Habert (1962, have discussed
-—the corresponding regime in the plume flow where two shocks and
a mixing layer merge at the boundary between the ambient and the
exhaust gases.

Consider now the flow in the limit of extremely high altitudes.
Here collisions of air molecules with other air molecules ane much
rarer than collisions between the air molecules and the body and may
be neglected in calculation of the flow pattern. This constitutes the
''free molecular' regime of fligit in which there iy no pile up of
molecules ahead of the body and no shock wave is formed. The corrcs-
ponding regime in the plume flow is the '""collisionless expansion' .of
exhaust gases.

In between the continuum and free-molecular flow regimes

lies a transition regime in which collisions between air molecules
cannot be altogether neglected. The molecules reflected from the
body cannot penetrate indefinitely far upstream without colliding
with other molecules in the ambient. As a result of such collisions
there will be a tendency for molecules to pile up in front of the body
and to form a region of incréased density. The higher the ambient
‘density, the smaller the penetration of the reflected molecule: and
thus the thinner the high-density region in front of the body. This
is the process by which a shock-wave is initially formed as a body de-
‘scends towards higher atmospheric densities. In the case of the
plume flow the transitional regime corresponds to the onset of colli-
sions between the ambient molecules and those¢ from the rocket exhaust,
forming a double shock containing a high-density region.

Figure 5.2 is a chart, again adressed to the re-entry problem,
locating the various flow regimes around a 2-foot diameter sphere
in altitude and vzlocity. Here Probstein (1961) has broken some of
the regimes dizcussed above into sub-regimes which correspond to
regions of validity of various mathematical approximations. Without
much explanation he locates the limit of shock formation along the
line where the shock thickness (estimated at 3 mean free paths) equals
the body radius:

8, <Ry (5.1)

5.3 Criteria for Shock Wave Formation

‘Since there is a pile-up of molecules in front of a body even
in free-molecule flow, it is difficult to establish a criterion for
shockwave formation in terms of the density gradient there. It seems
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preferable to examine this question in terms of the lateral propa-
gation of a density perturbation. Methods for calculating shock wave
shape and decay at very low RKeynolds numbers have been discussed

by Lighthill (L956). Although a specific calculation procedure has

not -been set up for either the blunt-body or the plume problem, Light-
hill's results can be used more or less directly to establish a criterion.

The relevant conclusion expressed in Lighthill's article is that
"acoustic disturbances decay according to the powér laws given by
shock wave theory while their Reynolds number exceeds about 1, and
ac‘,ordmg ty the exponential laws given by attenuation theory when
K is less than about 1. ('l‘he former decay laws are more rapid in the
former range, the latter in the latter.)" This means thatif R > 1,
the bow wave ahead-of a body or plume will propagate laterally approxi-
mately as predicted by blast-wave theory, while if R < 1, the disturbance
will die out very rapidly around the sides of the body.

Now Lighthill's model of thick shock waves with viscous dissipation
is based on Burger's equation and his Reynolds numbers, R, are not
directly comparable with ordinary Reynolds numbers based on shock
wave thickness. It is convenient, therefore, to consider the complete
N-wave, consisting of the bow shock, the rear shock, and the expan-
sion between them.. In this case the Reynolds number is simply re-
lated to the ratio of shock thickness to the length of the whole wave.

Fxgure 5.3 illustrates schematically the N-wave generated by
a sphere in both a high- dens;ty and a low-density flow. In the latter

the shock wave thickness is of the order of the sphere radius. For
the shock wave ;pacing shown, this thickness corresponds to about

one quarter of the total lerizth of the N-wave and it may be deduced from
Lighthill's calculated profile shapes that this corresponds to R ® 2.
Note, however, that this argument is only qualitative since the spacing
between the bow and rear shocks has only been sketched approximately..
What it does show is that Probstein's (1961) arbitrary criterion can be
reformulated in terms. of the initial Reynolds number of the N-wave
generated by the plume or ‘body and hence in térms of the lateral rate
of decay of this wave. Note that the vaiue of R in an axisymmetric
flow decreases with increasing distance from the axis so that a wave
which decays according to the blast-wave law initially may eventually
reach a point where it begins to decay much faster.

Now although the shock wave forms in the transitional regime,
estimates of its thickness can only be obtained as extrapolations from
the merged layer regime, where calculatious are possible. These
calculations yield a thickness at the stagnation point and not out where
the N-wave begins to form. Since the thickening of the shockwave be-

tween: these two- points cannot be calculated, we have chosen the some-

what conservative criterion

1

b, <7 Ry (5.2)
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Figure 5.3. Schematic N-Waves Generated by a
Hypersonic Sphere
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which, starting from a completely different line of reasoning, only

~ differs from: Probstein by a factor of 2.

5.4 Estimates of Shock Wave Thickness

Extensive calculations (Liepmann et al (1962)) by means of
the Boltzmann equation of the structure 6f plane shocks have shown
that the Navier-Stokes model yields a good approximation to the
thickness, if not to the details of the structure. We shall, therefore,
estimate shock thickness in blunt-body and plume flows by -extrapola-

‘ting available Navier-Siokes calculations.

Figure 5.4 represents the results of numerical calculations
of shock thickness in blunt-body flows. Three points have been taken
from Kao's (1963) calculations of the flow past a sphere and one point
represents our own initial calculation of the merged layer at the
nose of a plume, The correlation parameter is

A
1 % i
_Mw li'I:I

The inverse Mach number here accounts roughly for the variation be-
tween results obtainéd with different vzlues of M. It is consistent
with the idea that shock thickness should: depend on the mean free
path behind the shock more strongly than on the one-in. the incident
stream.

Extrapolation of these data to the critical value of Eq. 5.2
predicts the criterion

\
L‘Zl‘ Rﬁ < 0.4 (5. 3)
. Ry

for the onset of shock formation.

The correlation sp;ra,meter chosen here is essentially an
inverse Reynolds number and it can easily be shown that (5. 3) is
equivalent to

p. U R
Re » ﬁf—"—‘ > 4 (5. 4)

(-]

However the criterion in terms of the mean free path x is. easier
to use aince it is tabulated to higher altitudes. '
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5.5 Numerical Results

Thé nose-radius of a high-altitude rocket plume may be com-
puted from the blast wave formula of Hill and Habert (1963)

R 0.4 Y2
N —
VI A Ve
(5. 5)
0.4 D

M Ty

where D is the drag of the plume and Jg is a parameter in the blast
wave theory which depends on Yoo Over the range of y, of interest
the constant value J9 = :0.85 is a good enough approximation for the

present purpose.

The validity of this theory in the transitional flow regime is,
of course, dubious. Its prediction is nevertheless expected to be
approxxmately correct. Neely-(1964) has used it to estimate the
plume size of the SYNCOM apogec motor at an altitude of 35,000 Km
and found agreement to within half an order of magnitude with Baker-
Nunn photographs..

The shock thickness correlation parameter may therefore be
written

N
] ._..R: T 2.3 (5. 6)
M, Ry ,

Figure 5.5 illustrates the variation of this parameter with altitude for
two values of plume drag. Noteé that the plume drag value D « 12,:800
lbs corresponds to the Atlas or Titan sustainer engine. Also shown
in Fig. 5.5 is the limiting value of this parameter for shock wave
formation, criterion(5.3). It predicis shock wave formation to very
high altitude, above 400 Km. for the Atias and Titan engine.

The continuum-flow criterion used by Hill and Habert (1963)

Wwas
x4:0 < 1
RN - 7

" This can be located in Fig. 5.5 only if a value of M, is chosen. It

has been drawn for My = 6, which is typical in the altitude rarge of
interest. Note that it lies below the shock wave criterion by about
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one order of magnitude. Accordmg to Probstein's (1961) ¢hart illus-
trated in Fig. 5.2, this spread is too.ilarge; a less severe criterion
for continuum flow would be more appropriate.

5.6 Conclusions

The development in this section of a criterion for shock wave
formation by high-altitude rocket plumes is based on estimates of
the Reynolds number of the N-wave formed by the bow and rear shocks.
generated by the plume. The following conclusions may be drawn:

1. A more precise expression of the criterion developed
will require a better model of the rear shock in a2 plume
flow.

2. Given the length of the N-wave, the new criterion may

easily be related to the more familiar criteria given in
the literature in terms. of the ratio of shock thickness
to nose radius, & s/Rn-
3. Extrapolation of Navier-Stokes solutions: for both sphere
and plume flows has provided simple estimates of
o 84/Ry in terms of the parameter Ao/ MRy which is of
the form of a reciprocal Reynolds number.

4. Using plume-size estimates given by blast-wave theory

it has been shown that a shock wave will be formed
throughout the burning period of typical ICBM engines.
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